

ISOMETER® iso165C...

Insulation Monitoring Devices (IMD)

for unearthed DC drive systems (IT systems) in electric vehicles

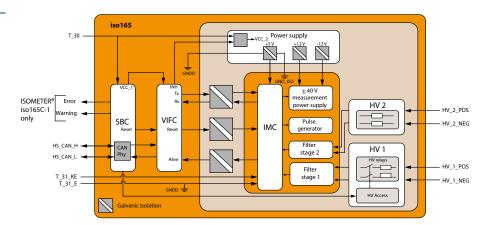
ISOMETER® iso165C...

ISOMETER® iso165C

Device features

- Insulation monitoring of AC and DC insulation faults for unearthed systems (IT systems) from 0...600 V peak
- · Power supply for all internal voltages
- Continuous measurement of insulation resistance from 0 $\Omega...50~\text{M}\Omega$
- Response time of ≤ 20 s for measured insulation resistance (using Direct Current Pulse (DCP))
- Automatic adaptation to the existing system leakage capacitance (≤ 1 μF)
- Detection of ground faults and lost ground line
- · Measurement of a second voltage
- The device works when:
 - HV is unstable
 - HV is powered off
 - There are symmetric or asymmetric insulation faults
 - Faults exist between HV lines and the supply voltage
- Galvanic insulation of all signals from the HV side
- HV coupled network
- · CAN bus interface
- Light weight: < 220 g (including housing and connection frame)
- iso165C-1 only: The iso165C-1 variant features Error and Warning signals on the separated high-side driver

Certifications



Product description

The ISOMETER® monitors the insulation resistance between the active HV components of an electrical drive system ($U_n = DC\ 0\ V...600\ V$) and the reference earth (chassis ground). The patented measurement technology is used to monitor the condition of the insulation on the DC side as well as on the AC motor side of the electrical drive system.

The ISOMETER® is assembled with three connectors. To achieve internal galvanic separation, connector 1 is connected to low-voltage (LV) areas and connectors 2 and 3 are connected to the HV areas in the car environment.

Due to its space saving design and optimized measurement technology, the device is optimized for use in hybrid or fully electric vehicles. The device meets the increased automotive requirements with regard to environmental conditions (e.g. temperatures and vibration, EMC). The ISOMETER® CAN bus interface allows it to integrate seamlessly into an existing CAN environment.

Function

The ISOMETER® iso165C and iso165C-1 consist of two main components, the Vehicle Interface Controller (VIFC) and the Insulation Monitoring Controller (IMC). The VIFC consists of a microcontroller with a UART communication interface that translates and forwards requests from the HS-CAN bus transparently to the IMC. The corresponding IMC responses are returned to the requesting instance via the HS-CAN bus. The VIFC supervises the running state of the IMC via a signal known as "Alive", and internally and cyclically requests the insulation value and the running state of the IMC. The results are cyclically sent as an informal message via the HS-CAN bus.

The IMC consists of the HV connectors with HV coupling relays, the measurement circuit and a microcontroller to analyse the measurement results. It generates internal alarm information from the measurement results, which is coded to produce the "Alive" signal mentioned previously. This signal is transmitted in parallel with the measurements and status information to the VIFC and from there over the HS-CAN bus. The IMC is galvanically separated from the car environment.

At initial power on, the ISOMETER® iso165C does not carry out any measurements until communication between the VIFC and IMC has been established. In addition, the HV coupling relays of the HV1 voltage path are, by default, open and therefore no valid measurement of voltage HV1 and the insulation resistance is possible until these relays are closed by an external command. Once these conditions have been satisfied, the ISOMETER® iso165C can immediately start measuring voltages HV1, HV2 and the insulation resistance.

In the ISOMETER® **iso165C-1**, however, the HV coupling relays of the HV1 voltage path are automatically closed at power on.

Function (continued)

The initial measurement values after power up are:

	HV relays open	HV relays closed
Insulation resistance	50,000 kΩ	Value in $k\Omega$
Voltage of HV1	0V	Value in V
Voltage of HV2	Value in V	Value in V

The ISOMETER® generates a pulsed measuring voltage that is superimposed on the IT system by terminals T_31_E/KE (chassis). Because the connection between the terminals E/KE and the chassis ground (T_31) is continuously monitored, it is necessary to install two separated conductors from terminals T_31_E/KE to chassis ground.

Standards - corresponding norms and regulations

General

IEC 61557-8 2007-01; IEC 60664-1 2004-04; ISO 6469-3 2001-11; ISO 23273-3 2006-11

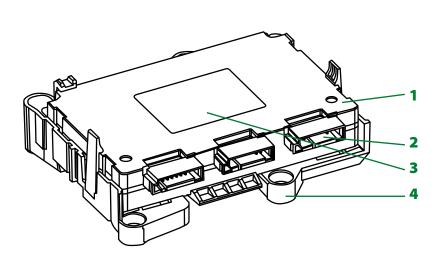
EMC

CISPR 25; ISO 7637-2; ISO 11452-4; ISO 11452-2; ISO 11452-8; ISO 10605; IEC 61326-2-4; IEC 61000-4-4; E1 acc. 72/245/EWG/EEC; ISO 16750-2

Environmental

ISO 16750-1; ISO 20653; ISO 16750-3; IEC 60068-2-14; IEC 60068-2-27; IEC 60068-2-32; IEC 60068-2-64; ISO 16750-4; IEC 60068-2-1; IEC 60068-2-38; IEC 60068-2-60; IEC 60068-2-78

Normative exclusion

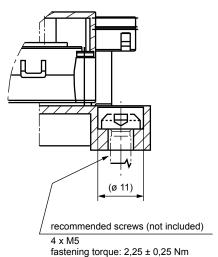

The device has gone through an automotive test procedure in accordance with multi customer requirements as outlined by reg. ISO 16750-x. IEC 61557-8 will be fulfilled by creating an LED warning function and test button at the customer site if necessary.

ISOMETER® iso165C and ISOMETER® iso165C-1 comparison

While the ISOMETER® iso165C and ISOMETER® iso165C-1 are similiar in many aspects the main differences between the two are shown in the table below:

Feature	iso165C	iso165C-1
Contains an output driver	No	Yes. Error and Warning signals are available on the separated high-side driver
Coupling relays at power on	The HV coupling relays of the HV1 voltage path are, by default, open and therefore no valid voltage and insulation resistance measurements are possible until these relays are closed, which must be carried out using an external command	The HV coupling relays of the HV1 voltage path are automatically closed at power on
Baud rate	250 kBaud	500 kBaud
Terminating resistance	124Ω internally	None

Enclosure and mounting

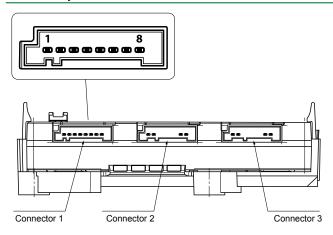

1 - Enclosure PBT GF30 black, UL Standard: UL94 V0

2 - Connector pin Cu-alloy, tin plated

3 - Label

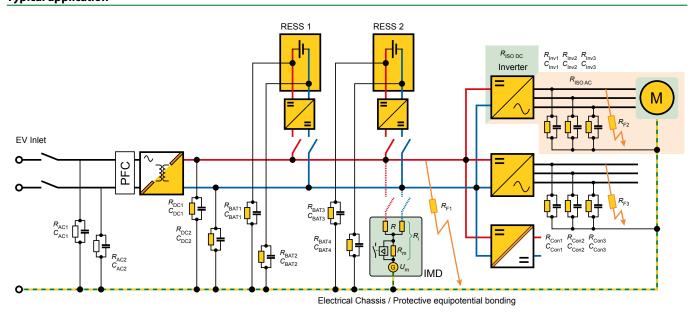
4 - Bracket

Section view A-A Scale: 2:1



White Polyester foil

PBT GF30 black, UL Standard: UL94 V0


Connectivity

Connector*)	Туре	Code	Colour
1	1719183-1	A	Black
2	1719183-2	В	White
3	1719183-3	С	Blue

^{*)} Please refer to "Technical Data" for detailed connector information.

Typical application

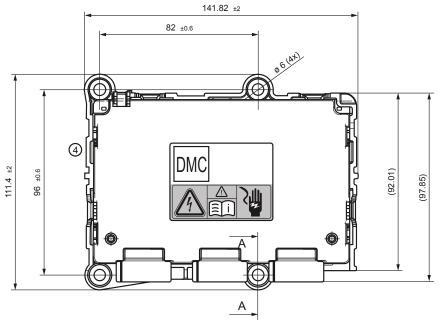
Ordering information

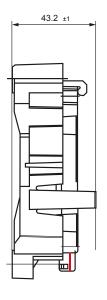
Response value range	Nominal voltage DC	Supply voltage DC	Туре	Art. No.
Alarm 1 (Error): 30 k Ω 1 M Ω (default: 300 k Ω); Alarm 2 (Warning): 40 k Ω 2 M Ω (default: 55 k Ω)	0600 V	12 V	iso165C	B91068175
Alarm 1 (Error): 30 k Ω 1 M Ω (default: 400 k Ω); Alarm 2 (Warning): 40 k Ω 2 M Ω (default: 250 k Ω)	0600 V	12 V	iso165C-1	B91068176

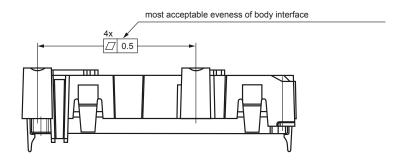
Accessories

Туре	Art. No.
iso165C connecting kit	B91068503

2.25 ± 0.25 Nm (XX lbs-in)


Technical data


Supply voltage	
Supply voltage $U_{\rm S}$	DC 916 V
Nominal supply voltage	DC 12 V
Max. operational current Is	300 mA (typ. 185 mA)
Max. current / _K	5 A
Power dissipation P _S	< 2.5 W
Supervised IT system	
Rated voltage range U _n	DC 0600 V
Tolerance	+15 %
Frequency range	10 Hz1 kHz
System leakage capacitance C _e	≤ 1 µF
Withstand voltage test	AC 1.9 kV/1 min
Measuring circuit	
Measurement method	Bender DCP technology
Measuring voltage $U_{\rm m}$	±40 V
Measuring current $I_{\rm m}$ at $R_{\rm F} = 0$	±33 μA
Impedance Z _i at 50 Hz (HV1)	_55 p
	ch line, high resistance in off state)
Internal resistance R _i (HV1)	en inic, ing., resistance in on state,
	ch line, high resistance in off state)
Impedance Z _i at 50 Hz (HV2)	\geq 10.5 M Ω (\geq 21 M Ω each line)
Internal resistance R _i (HV2)	\geq 10.5 M Ω (\geq 21 M Ω each line)
	,
Measuring ranges	
Insulation resistance range	0 Ω50 MΩ
Insulation resistance duration/Pulse (normal operation)	
	\sim 6 s (≤ 1 μF/10 MΩ)
Relative error (DCP)	100 kΩ5 MΩ, ±15 %
Absolute error (DCP)	0 Ω100 kΩ, ±15 kΩ
High-voltage range	0600 V
High-voltage tolerance	0100 V, ±5 V
	100600 V, ±5 %
High-side driver output (iso165C-1)	
HST 1*	High-side driver 1, iso Warning
Maximum current, lout_max	80 mA
HST 2*	High-side driver 2, iso Error
Maximum current, lout max	80 mA
, <u>-</u>	
Response values	
iso165C	
Response value Alarm 1 (Error)	$30 \text{ k}\Omega1 \text{ M}\Omega \text{ (default: } 300 \text{ k}\Omega\text{)}$
Response value Alarm 2 (Warning)	$40 \text{ k}\Omega2 \text{ M}\Omega \text{ (default: 55 k}\Omega)$
iso165C-1	
Response value Alarm 1 (Error)	30 k Ω 1 M Ω (default: 400 k Ω)
Response value Alarm 2 (Warning)	40 k Ω 2 M Ω (default: 250 k Ω)
iso165C und iso165C-1	
Response uncertainty (according to IEC 61557-8)	±15 %
Hysteresis	+25 %
Factor averaging F _{ave}	110 (default: 3)
Response time t _{an} (DCP)	((
(Changeover R_F : 10 M Ω - $R_{an/2}$; at $C_e = 1 \mu F$; $U_n = DC$ 60	00 V) $t_{an} \le 20 \text{ s (at } F_{ave} = 10^{**})$
() J.	during self test $t_{an} + 10 \text{ s}$
Measurement time after power on (and after HV relays a	
Switch-off time tab (DCP)	, , p.,
(Changeover R_F : $R_{an/2}$ - 10 M Ω ; at $C_e = 1 \mu F$; $U_n = DC 60$	00 V) $t_{ab} \le 40 \text{ s (at } F_{ave} = 10)$
. 5	during self test t_{ab} +10 s


Interface	
Protocol	HS-CAN
iso165C	
Data rate	250 kBaud
Terminating resistance	124 Ω internally
iso165C-1	
Data rate	500 kBaud
Terminating resistance	None
Environment/EMC	
EMC	IEC 61326-2-4
Overvoltage category/degree of pollu	ition II/2
Temperature range	-40+85 °C
Range of application	5,000 m above sea level
Connectors (Tyco)	
Receptacle housing type 17	719183-1, 1719183-2, 1719183-3 (black, white, blue)
Receptacle drawing number	C-1719183
Contact type (tin plated)	5-963715-1
Contact wire range	0,500,75 mm ²
Contact drawing number	929454
Crimp hand tool	539635-1
Other	
Operating mode	Continuous operation
Degree of protection	IP5K0
Software version	
iso165C	V1.0 - Release S010 (VIFC: V5.0 , IMC V5.0)
iso165C-1	V2.0 - Release S010 (VIFC: V10.0 , IMC V5.0)
Mounting	
Recommended screws for mounting	4 x M5 (not included)

- * External 2.2 k Ω pull-down resistor to chassis ground (KL.31) is required. Not protected against a short circuit in the event that KL.31 is missing. Therefore, a 100 Ω resistor is required on each driver output.
- ** Fave = 10 is recommended for electric vehicles

Max. tightening torque

Bender GmbH & Co. KG

P.O. Box 1161 • 35301 Gruenberg • Germany Londorfer Strasse 65 • 35305 Gruenberg • Germany Tel.: +49 6401 807-0 • Fax: +49 6401 807-259 E-Mail: info@bender.de • www.bender.de

